Dra. María ANGUIANO MORENO Web en francés Web en inglés Web en español Web Suisse Web USA

Doctora en Matemáticas
Profesora Titular de Universidad

  1. Modeling of a non-Newtonian thin film passing a thin porous medium
    María Anguiano & F.J. Suárez-Grau
  2. Asymptotic analysis of the Navier-Stokes equations in a thin domain with power slip boundary conditions
    María Anguiano & F.J. Suárez-Grau
  3. Modeling of a micropolar thin film flow with rapidly varying thickness and non-standard boundary conditions
    María Anguiano & F.J. Suárez-Grau
  4. Modeling non-Newtonian fluids in a thin domain perforated with cylinders of small diameter
    María Anguiano & F.J. Suárez-Grau
  5. Effective models for generalized Newtonian fluids through a thin porous media following the Carreau law
    María Anguiano, Matthieu Bonnivard & F.J. Suárez-Grau
  6. Mathematical derivation of a Reynolds equation for magneto-micropolar fluid flows through a thin domain
    María Anguiano & F.J. Suárez-Grau
    ZAMP - Journal of Applied Mathematics and Physics, 75, 28 (2024) https://doi.org/10.1007/s00033-023-02169-5
  7. On p-Laplacian reaction-diffusion problems with dynamical boundary conditions in perforated media
    María Anguiano
    Mediterranean Journal of Mathematics, 20, 124 (2023) https://doi.org/10.1007/s00009-023-02333-1
  8. Sharp pressure estimates for the Navier-Stokes system in thin porous media
    María Anguiano & F.J. Suárez-Grau
    Bull. Malays. Math. Sci. Soc., 46, 117 (2023) https://doi.org/10.1007/s40840-023-01514-1
  9. Carreau law for non-Newtonian fluid flow through a thin porous media
    María Anguiano, Matthieu Bonnivard & F.J. Suárez-Grau
    The Quarterly Journal of Mechanics and Applied Mathematics, (2022) https://doi.org/10.1093/qjmam/hbac004
  10. Reaction-diffusion equation on thin porous media
    María Anguiano
    Bull. Malays. Math. Sci. Soc., 44, 3089-3110 (2021) https://doi.org/10.1007/s40840-021-01103-0
  11. Lower-dimensional nonlinear Brinkman's law for non-Newtonian flows in a thin porous medium
    María Anguiano & F.J. Suárez-Grau
    Mediterranean Journal of Mathematics, 18, 175 (2021). https://doi.org/10.1007/s00009-021-01814-5
  12. Homogenization of parabolic problems with dynamical boundary conditions of reactive-diffusive type in perforated media
    María Anguiano
    ZAMM - Journal of Applied Mathematics and Mechanics, (2020) https://doi.org/10.1002/zamm.202000088
  13. Existence, uniqueness and homogenization of nonlinear parabolic problems with dynamical boundary conditions in perforated media
    María Anguiano
    Mediterranean Journal of Mathematics, (2020) 17:18. doi: 10.1007/s00009-019-1459-y
  14. Homogenization of Bingham Flow in thin porous media
    María Anguiano & Renata Bunoiu
    Networks and Heterogeneous Media, Vol. 15, No. 1 (2020) 87-110.
  15. On the flow of a viscoplastic fluid in a thin periodic domain
    María Anguiano & Renata Bunoiu
    In: C. Constanda, P. Harris (eds.), Integral Methods in Science and Engineering, Springer Nature Switzerland AG (2019).
  16. Homogenization of a non-stationary non-Newtonian flow in a porous medium containing a thin fissure
    María Anguiano
    European Journal of Applied Mathematics, Vol. 30, No. 2 (2019) 248-277.
  17. Newtonian fluid flow in a thin porous medium with non-homogeneous slip boundary conditions
    María Anguiano & F.J. Suárez-Grau
    Networks and Heterogeneous Media, Vol. 14, No. 2 (2019) 289-316.
  18. Nonlinear Reynolds equations for non-Newtonian thin-film fluid flows over a rough boundary
    María Anguiano & F.J. Suárez-Grau
    IMA Journal of Applied Mathematics, Vol. 84, No. 1 (2019) Pages 63-95.
  19. Uniform boundedness of the attractor in H2 of a non-autonomous epidemiological system
    María Anguiano
    Annali di Matematica Pura ed Applicata (1923 -), Vol. 197, No. 6 (2018) 1729-1737.
  20. Analysis of the effects of a fissure for a non-Newtonian fluid flow in a porous medium
    María Anguiano & F.J. Suárez-Grau
    Communications in Mathematical Sciences, Vol. 16 (2018) Number 1, 273-292.
  21. The transition between the Navier-Stokes equations to the Darcy equation in a thin porous medium
    María Anguiano & F.J. Suárez-Grau
    Mediterranean Journal of Mathematics, (2018) 15:45. doi: 10.1007/s00009-018-1086-z.
  22. The ε-entropy of some infinite dimensional compact ellipsoids and fractal dimension of attractors
    María Anguiano & Alain Haraux
    Evolution Equation and Control Theory, Vol. 6, No. 3 (2017) 345-356.
  23. Existence, uniqueness and global behavior of the solutions to some nonlinear vector equations in a finite dimensional Hilbert space
    M. Abdelli, María Anguiano & Alain Haraux
    Nonlinear Analysis, Vol. 161 (2017) 157-181.
  24. Derivation of a quasi-stationary coupled Darcy-Reynolds equation for incompressible viscous fluid flow through a thin porous medium with a fissure
    María Anguiano
    Mathematical Methods in the Applied Sciences, Vol. 40, No. 13, (2017) 4738-4757.
  25. On the non-stationary non-Newtonian flow through a thin porous medium
    María Anguiano
    ZAMM - Journal of Applied Mathematics and Mechanics, Vol. 97, No. 8, (2017) 895-915.
  26. Darcy's laws for non-stationary viscous fluid flow in a thin porous medium
    María Anguiano
    Mathematical Methods in the Applied Sciences, Vol. 40, No. 8, (2017) 2878-2895.
  27. Derivation of a coupled Darcy-Reynolds equation for a fluid flow in a thin porous medium including a fissure
    María Anguiano & F.J. Suárez-Grau
    ZAMP - Journal of Applied Mathematics and Physics, (2017) 68: 52. DOI: 10.1007/s00033-017-0797-5.
  28. Homogenization of an incompressible non-Newtonian flow through a thin porous medium
    María Anguiano & F.J. Suárez-Grau
    ZAMP - Journal of Applied Mathematics and Physics, (2017) 68: 45. DOI: 10.1007/s00033-017-0790-z.
  29. Existence and estimation of the Hausdorff dimension of attractors for an epidemic model
    María Anguiano
    Mathematical Methods in the Applied Sciences, Vol. 40, No. 4, (2017) 857-870.
  30. Pullback attractors for a reaction-diffusion equation in a general nonempty open subset of RN with non-autonomous forcing term in H-1
    María Anguiano
    International Journal of Bifurcation and Chaos, Vol. 25, No. 12 (2015), 1550164, 10 pp., DOI: 10.1142/S0218127415501643.
  31. H2-boundedness of the pullback attractor for the non-autonomous SIR equations with diffusion
    María Anguiano
    Nonlinear Analysis: Theory, Methods & Applications, Vol. 113, (2015) 180-189.
  32. Attractors for a non-autonomous Liénard equation
    María Anguiano
    International Journal of Bifurcation and Chaos, Vol. 25, No. 2 (2015), 1550032, 11 pp., DOI: 10.1142/S0218127415500327.
  33. Regularity results and exponential growth for pullback attractors of a non-autonomous reaction-diffusion model with dynamical boundary conditions
    María Anguiano, P. Marín-Rubio & José Real
    Nonlinear Analysis Series B: Real World Applications, Vol. 20, (2014) 112-125.
  34. Asymptotic behaviour of the nonautonomous SIR equations with diffusion
    María Anguiano & P.E. Kloeden
    Communications on Pure and Applied Analysis, Vol. 13, No. 1, (2014) 157-173.
  35. Asymptotic behaviour of a nonautonomous Lorenz-84 system
    María Anguiano & T. Caraballo
    Discrete and Continuous Dynamical Systems - Series A, Vol. 34, No. 10, (2014) 3901-3920.
  36. Pullback Attractors for non-autonomous dynamical systems
    María Anguiano, T. Caraballo, José Real & J. Valero
    In: S. Pinelas, M. Chipot, Z. Dosla (eds.), Differential and Difference Equations with Applications, Springer Proceedings in Mathematics & Statistics, Vol. 47 (2013). Springer, New York, NY.
  37. Pullback attractors for a non-autonomous integro-differential equation with memory in some unbounded domains
    María Anguiano, T. Caraballo, José Real & J. Valero
    International Journal of Bifurcation and Chaos, Vol. 23, No. 3 (2013), 1350042, 24 pp., DOI: 10.1142/S0218127413500429.
  38. On the Kneser property for reaction-diffusion equations in some unbounded domains with an H-1-valued non-autonomous forcing term
    María Anguiano, F. Morillas & J. Valero
    Nonlinear Analysis: Theory, Methods & Applications, Vol. 75, (2012) 2623-2636.
  39. Pullback attractors for non-autonomous reaction-diffusion equations with dynamical boundary conditions
    María Anguiano, P. Marín-Rubio & José Real
    Journal of Mathematical Analysis and Applications, Vol. 383, (2011) 608-618.
  40. Asymptotic behaviour of nonlocal reaction-diffusion equations
    María Anguiano, P.E. Kloeden & T. Lorenz
    Nonlinear Analysis: Theory, Methods & Applications, Vol. 73, (2010) 3044-3057.
  41. Pullback attractors for reaction-diffusion equations in some unbounded domains with an H-1-valued non-autonomous forcing term and without uniqueness of solutions
    María Anguiano, T. Caraballo, José Real & J. Valero
    Discrete and Continuous Dynamical Systems Series B, Vol. 14, No. 2 (2010) 307-326.
  42. Pullback attractor for a non-autonomous reaction-diffusion equation in some unbounded domains
    María Anguiano
    Boletín SEMA, No. 51 (2010) 9-17.
  43. An exponential growth condition in H2 for the pullback attractor of a non-autonomous reaction-diffusion equation
    María Anguiano, T. Caraballo & José Real
    Nonlinear Analysis: Theory, Methods & Applications, Vol. 72, No. 11 (2010) 4071-4075.
  44. H2-boundedness of the pullback attractor for a non-autonomous reaction-diffusion equation
    María Anguiano, T. Caraballo & José Real
    Nonlinear Analysis: Theory, Methods & Applications, Vol. 72, No. 2 (2010) 876-880.
  45. Existence of pullback attractor for a reaction-diffusion equation in some unbounded domains with non-autonomous forcing term in H-1
    María Anguiano, T. Caraballo & José Real
    International Journal of Bifurcation and Chaos, Vol. 20, No. 9 (2010) 2645-2656.