Dra. María ANGUIANO MORENO
Doctora en Matemáticas
Profesora Titular de Universidad
-
Modeling of a non-Newtonian thin film passing a thin porous medium
María Anguiano & F.J. Suárez-Grau
-
Asymptotic analysis of the Navier-Stokes equations in a thin domain with power slip boundary conditions
María Anguiano & F.J. Suárez-Grau
-
Modeling of a micropolar thin film flow with rapidly varying thickness and non-standard boundary conditions
María Anguiano & F.J. Suárez-Grau
-
Modeling non-Newtonian fluids in a thin domain perforated with cylinders of small diameter
María Anguiano & F.J. Suárez-Grau
-
Effective models for generalized Newtonian fluids through a thin porous media following the Carreau law
María Anguiano, Matthieu Bonnivard & F.J. Suárez-Grau
-
Mathematical derivation of a Reynolds equation for magneto-micropolar fluid flows through a thin domain
María Anguiano & F.J. Suárez-Grau
ZAMP - Journal of Applied Mathematics and Physics, 75, 28 (2024) https://doi.org/10.1007/s00033-023-02169-5
-
On p-Laplacian reaction-diffusion problems with dynamical boundary conditions in perforated media
María Anguiano
Mediterranean Journal of Mathematics, 20, 124 (2023) https://doi.org/10.1007/s00009-023-02333-1
-
Sharp pressure estimates for the Navier-Stokes system in thin porous media
María Anguiano & F.J. Suárez-Grau
Bull. Malays. Math. Sci. Soc., 46, 117 (2023)
https://doi.org/10.1007/s40840-023-01514-1
-
Carreau law for non-Newtonian fluid flow through a thin porous media
María Anguiano, Matthieu Bonnivard & F.J. Suárez-Grau
The Quarterly Journal of Mechanics and Applied Mathematics, (2022)
https://doi.org/10.1093/qjmam/hbac004
-
Reaction-diffusion equation on thin porous media
María Anguiano
Bull. Malays. Math. Sci. Soc., 44, 3089-3110 (2021)
https://doi.org/10.1007/s40840-021-01103-0
-
Lower-dimensional nonlinear Brinkman's law for non-Newtonian flows in a thin porous medium
María Anguiano & F.J. Suárez-Grau
Mediterranean Journal of Mathematics, 18, 175 (2021). https://doi.org/10.1007/s00009-021-01814-5
-
Homogenization of parabolic problems with dynamical boundary conditions of reactive-diffusive type in perforated media
María Anguiano
ZAMM - Journal of Applied Mathematics and Mechanics, (2020)
https://doi.org/10.1002/zamm.202000088
-
Existence, uniqueness and homogenization of nonlinear parabolic problems with dynamical boundary conditions in perforated media
María Anguiano
Mediterranean Journal of Mathematics, (2020) 17:18. doi: 10.1007/s00009-019-1459-y
-
Homogenization of Bingham Flow in thin porous media
María Anguiano & Renata Bunoiu
Networks and Heterogeneous Media, Vol. 15, No. 1 (2020) 87-110.
-
On the flow of a viscoplastic fluid in a thin periodic domain
María Anguiano & Renata Bunoiu
In: C. Constanda, P. Harris (eds.), Integral Methods in Science and Engineering, Springer Nature Switzerland AG (2019).
-
Homogenization of a non-stationary non-Newtonian flow in a porous medium containing a thin fissure
María Anguiano
European Journal of Applied Mathematics, Vol. 30, No. 2 (2019) 248-277.
-
Newtonian fluid flow in a thin porous medium with non-homogeneous slip boundary conditions
María Anguiano & F.J. Suárez-Grau
Networks and Heterogeneous Media, Vol. 14, No. 2 (2019) 289-316.
-
Nonlinear Reynolds equations for non-Newtonian thin-film fluid flows over a rough boundary
María Anguiano & F.J. Suárez-Grau
IMA Journal of Applied Mathematics, Vol. 84, No. 1 (2019) Pages 63-95.
-
Uniform boundedness of the attractor in H2 of a non-autonomous epidemiological system
María Anguiano
Annali di Matematica Pura ed Applicata (1923 -), Vol. 197, No. 6 (2018) 1729-1737.
-
Analysis of the effects of a fissure for a non-Newtonian fluid flow in a porous medium
María Anguiano & F.J. Suárez-Grau
Communications in Mathematical Sciences, Vol. 16 (2018) Number 1, 273-292.
-
The transition between the Navier-Stokes equations to the Darcy equation in a thin porous medium
María Anguiano & F.J. Suárez-Grau
Mediterranean Journal of Mathematics, (2018) 15:45. doi: 10.1007/s00009-018-1086-z.
-
The ε-entropy of some infinite dimensional compact ellipsoids and fractal dimension of attractors
María Anguiano & Alain Haraux
Evolution Equation and Control Theory, Vol. 6, No. 3 (2017) 345-356.
-
Existence, uniqueness and global behavior of the solutions to some nonlinear vector equations in a finite dimensional Hilbert space
M. Abdelli, María Anguiano & Alain Haraux
Nonlinear Analysis, Vol. 161 (2017) 157-181.
-
Derivation of a quasi-stationary coupled Darcy-Reynolds equation for incompressible viscous fluid flow through a thin porous medium with a fissure
María Anguiano
Mathematical Methods in the Applied Sciences, Vol. 40, No. 13, (2017) 4738-4757.
-
On the non-stationary non-Newtonian flow through a thin porous medium
María Anguiano
ZAMM - Journal of Applied Mathematics and Mechanics, Vol. 97, No. 8, (2017) 895-915.
-
Darcy's laws for non-stationary viscous fluid flow in a thin porous medium
María Anguiano
Mathematical Methods in the Applied Sciences, Vol. 40, No. 8, (2017) 2878-2895.
-
Derivation of a coupled Darcy-Reynolds equation for a fluid flow in a thin porous medium including a fissure
María Anguiano & F.J. Suárez-Grau
ZAMP - Journal of Applied Mathematics and Physics, (2017) 68: 52. DOI: 10.1007/s00033-017-0797-5.
-
Homogenization of an incompressible non-Newtonian flow through a thin porous medium
María Anguiano & F.J. Suárez-Grau
ZAMP - Journal of Applied Mathematics and Physics, (2017) 68: 45. DOI: 10.1007/s00033-017-0790-z.
-
Existence and estimation of the Hausdorff dimension of attractors for an epidemic model
María Anguiano
Mathematical Methods in the Applied Sciences, Vol. 40, No. 4, (2017) 857-870.
-
Pullback attractors for a reaction-diffusion equation in a general nonempty open subset of RN with non-autonomous forcing term in H-1
María Anguiano
International Journal of Bifurcation and Chaos, Vol. 25, No. 12 (2015), 1550164, 10 pp., DOI: 10.1142/S0218127415501643.
-
H2-boundedness of the pullback attractor for the non-autonomous SIR equations with diffusion
María Anguiano
Nonlinear Analysis: Theory, Methods & Applications, Vol. 113, (2015) 180-189.
-
Attractors for a non-autonomous Liénard equation
María Anguiano
International Journal of Bifurcation and Chaos, Vol. 25, No. 2 (2015), 1550032, 11 pp., DOI: 10.1142/S0218127415500327.
-
Regularity results and exponential growth for pullback attractors of a non-autonomous reaction-diffusion model with dynamical boundary conditions
María Anguiano, P. Marín-Rubio & José Real
Nonlinear Analysis Series B: Real World Applications, Vol. 20, (2014) 112-125.
-
Asymptotic behaviour of the nonautonomous SIR equations with diffusion
María Anguiano & P.E. Kloeden
Communications on Pure and Applied Analysis, Vol. 13, No. 1, (2014) 157-173.
-
Asymptotic behaviour of a nonautonomous Lorenz-84 system
María Anguiano & T. Caraballo
Discrete and Continuous Dynamical Systems - Series A, Vol. 34, No. 10, (2014) 3901-3920.
-
Pullback Attractors for non-autonomous dynamical systems
María Anguiano, T. Caraballo, José Real & J. Valero
In: S. Pinelas, M. Chipot, Z. Dosla (eds.), Differential and Difference Equations with Applications, Springer Proceedings in Mathematics & Statistics, Vol. 47 (2013). Springer, New York, NY.
-
Pullback attractors for a non-autonomous integro-differential equation with memory in some unbounded domains
María Anguiano, T. Caraballo, José Real & J. Valero
International Journal of Bifurcation and Chaos, Vol. 23, No. 3 (2013), 1350042, 24 pp., DOI: 10.1142/S0218127413500429.
-
On the Kneser property for reaction-diffusion equations in some unbounded domains with an H-1-valued non-autonomous forcing term
María Anguiano, F. Morillas & J. Valero
Nonlinear Analysis: Theory, Methods & Applications, Vol. 75, (2012) 2623-2636.
-
Pullback attractors for non-autonomous reaction-diffusion equations with dynamical boundary conditions
María Anguiano, P. Marín-Rubio & José Real
Journal of Mathematical Analysis and Applications, Vol. 383, (2011) 608-618.
-
Asymptotic behaviour of nonlocal reaction-diffusion equations
María Anguiano, P.E. Kloeden & T. Lorenz
Nonlinear Analysis: Theory, Methods & Applications, Vol. 73, (2010) 3044-3057.
-
Pullback attractors for reaction-diffusion equations in some unbounded domains
with an H-1-valued non-autonomous forcing term and without uniqueness of solutions
María Anguiano, T. Caraballo, José Real & J. Valero
Discrete and Continuous Dynamical Systems Series B, Vol. 14, No. 2 (2010) 307-326.
-
Pullback attractor for a non-autonomous reaction-diffusion equation in some unbounded domains
María Anguiano
Boletín SEMA, No. 51 (2010) 9-17.
-
An exponential growth condition in H2 for the pullback attractor of a non-autonomous reaction-diffusion equation
María Anguiano, T. Caraballo & José Real
Nonlinear Analysis: Theory, Methods & Applications, Vol. 72, No. 11 (2010) 4071-4075.
-
H2-boundedness of the pullback attractor for a non-autonomous reaction-diffusion equation
María Anguiano, T. Caraballo & José Real
Nonlinear Analysis: Theory, Methods & Applications, Vol. 72, No. 2 (2010) 876-880.
-
Existence of pullback attractor for a reaction-diffusion equation in some unbounded domains with non-autonomous forcing term in H-1
María Anguiano, T. Caraballo & José Real
International Journal of Bifurcation and Chaos, Vol. 20, No. 9 (2010) 2645-2656.